Assignment 13.

Residues and stuff

This assignment is due Wednesday, April 24. Collaboration is welcome. If you do collaborate, make sure to write/type your own paper.

- (1) Compute

 - (a) $\int_{-\infty}^{\infty} \frac{dx}{x^2 + p^2}, \text{ for } p > 0,$ (b) $\int_{-\infty}^{\infty} \frac{dx}{(x^2 + p^2)^2}, \text{ for } p > 0.$
- (2) Find the following residues:
 - (a) res $1/e^z$.
 - (b) Find residues of $\frac{z^2}{(z+1)^2(z-4)(z+3)}$ at all its poles.
 - (c) Is residue of $\sin(1/z)$ defined at z=0? If yes, find the residue; if not, explain why.
 - (d) Same question about $\frac{1}{\sin(1/z)}$.
- (3) (a) Find res $\frac{\varphi(z)}{(z-a)^n}$, where φ is a given function analytic at a and n is a positive integer.
 - (b) Suppose a is a simple pole of f, and let $\operatorname{res}_{a} f = A$. Find $\operatorname{res}_{a} (\varphi f)$, where $\varphi(z)$ is analytic at a.
- (4) In this problem we compute the sum $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$
 - (a) Find first two nonzero terms of the Laurent series for $\cot z$ at 0. (Hint: For example, you can find first few terms of the Taylor series at 0 of analytic function $z \cot z$ by differentiation; or you can straightforwardly divide cos by sin.)
 - (b) Find all isolated singular points of $\cot(\pi z)$. Find the corresponding residues. (*Hint:* The points are $z = k, k \in \mathbb{Z}$.)
 - (c) Consider the function $\frac{\cot(\pi z)}{z^2}$. Find its residues at all its isolated singular points. (*Hint*: At $k \neq 0$, use Problem 3b. Treat z = 0 separately
 - (d) Let γ_n be the circle $R_n e^{it}$, $0 \le t \le 2\pi$, where $R_n = n + \frac{1}{2}$. Find the integral

$$\int_{\gamma_n} \frac{\cot(\pi z)}{z^2} dz$$

using the residue theorem.

(e) Show that for a fixed $t \neq m\pi$, $|\cot(\pi R_n e^{it})| \to 1$ as $n \to \infty$. Show that for a fixed $t = m\pi$, $|\cot(\pi R_n e^{it})| \to 0$ as $n \to \infty$. (*Hint:* For example, you can use formulas $|\sin z|^2 = \sinh^2 y + \sin^2 x$, $|\cos z|^2 = \cosh^2 y - \sin^2 x$ that we got in Problem 5 of HW4.)

- (f) (This item is optional, i.e. not included in the denominator of the grade. You can take it for granted in subsequent argument.) Conclude that $|\cot(\pi z)|$ is eventually bounded by 2 on circles γ_n . (Hint: This is not hard, just a bit technical.)
- (g) Conclude that

$$\int_{\gamma_n} \frac{\cot(\pi z)}{z^2} dz \to 0 \quad \text{as } n \to \infty.$$

(*Hint*: Use $|\int f dz| \leq ML$.)

- (h) Put together 4d and 4g to compute $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ (*Hint:* If your answer is not $\pi^2/6$, something is wrong.)
- (5) Similar to the Problem 4, find the sum

$$\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots$$

You can take for granted that at 0, $\cot z = \frac{c_{-1}}{z} + c_1 z - z^3/45 + \ldots$, where c_{-1}, c_1 were found in 4a.

(*Hint:* If your answer is not $\pi^4/90$, something is wrong.)

COMMENT. The same technique can be used to find $\sum_{n=-\infty}^{\infty} R(n)$, where

R(n) is an arbitrary rational function with the denominator Q(z) at least 2 degrees higher than the numerator, and $Q(n) \neq 0$ at $n \in \mathbb{Z}$. The argument is even a bit easier because under such constraints, because there is no need to deal with the annoying residue at 0 separately.

In the case Q(n) = 0 for some n (e.g. $R(z) = 1/z^2$ or $1/z^4$ as above), one can find the same sum, omitting the infinite terms (as we actually did in the Problems 4 and 5).

QUESTION. Why doesn't this help find $\frac{1}{1^3} + \frac{1}{2^3} + \frac{1}{3^3} + \dots$? (By the way, it is still possible to find this sum via residues, but we'd have to use something other than $\cot z$.)